锦书来文章网天涯何处是归途

首页 > 节日祝福 / 正文

反比例函数教案【多篇】

2024-11-04 13:40:36 节日祝福
文章反比例函数教案【多篇】由网友墨香古卷投稿,希望给你工作学习带来帮助,当然本站还有更多反比例函数教案【多篇】相关模板与范例供你参考借鉴。

【概述】反比例函数教案【多篇】为的会员投稿推荐,但愿对你的学习工作带来帮助。

《反比例函数》教师教案 篇一

教学目标:

1、通过感知生活中的事例,理解并掌握反比例的含义,经初步判断两种相关联的量是否成反比例

2、培养学生的逻辑思维能力

3、感知生活中的数学知识

重点难点1.通过具体问题认识反比例的量。

2、掌握成反比例的量的变化规律及其 特征

教学难点:

认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。

教学过程:

一、课前预习

预习24---26页内容

1、什么是成反比例的量?你是怎么理解的?

2、情境一中的两个表中量变化关系相同吗?

3、三个情境中的两个量哪些是成反比例的量?为什么?

二、展示与交流

利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律

情境(一)

认识加法表中和是12的直线及乘法表中积是12的曲线。

引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。

情境(二)

让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每

两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考

同桌交流,用自己的语言表达

写出关系式:速度×时间=路程(一定)

观察思考并用自己的语言描述变化关系乘积(路程)一定

情境(三)

把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?用自己的语言描述变化关系

写出关系式:每杯果汁量×杯数=果汗总量(一定)

5、以上两个情境中有什么共同点?

反比例意义

引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。

活动四:想一想

二、反馈与检测

1、判断下面每题是否成反比例

(1)出油率一定,香油的质量与芝麻的质量。

(2)三角形的面积一定,它的底与高。

(3)一个数和它的倒数。

(4)一捆100米电线,用去长度与剩下长度。

(5)圆柱体的体积一定,底面积和高。

(6)小林做10道数学题,已做的题和没有做的题。

(7)长方形的长一定,面积和宽。

(8)平行四边形面积一定,底和高。

2、教材“练一练”P33第1题。

3、教材“练一练”P33第2题。

4、找一找生活中成反比例的例子,并与同伴交流。

反比例函数教案设计 篇二

一、教学目标

1、利用反比例函数的知识分析、解决实际问题

2、渗透数形结合思想,提高学生用函数观点解决问题的能力

二、重点、难点

1、重点:利用反比例函数的知识分析、解决实际问题

2、难点:分析实际问题中的数量关系,正确写出函数解析式

3、难点的突破方法:

用函数观点解实际问题,一要搞清题目中的基本数量关系,将实际问题抽象成数学问题,看看各变量间应满足什么样的关系式(包括已学过的基本公式),这一步很重要;二是要分清自变量和函数,以便写出正确的函数关系式,并注意自变量的取值范围;三要熟练掌握反比例函数的意义、图象和性质,特别是图象,要做到数形结合,这样有利于分析和解决问题。教学中要让学生领会这一解决实际问题的基本思路。

三、例题的意图分析

教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。

教材第58页的例2是一道利用反比例函书包www.haoword.com范文数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。

补充例题一是为了巩固反比例函数的有关知识,二是为了提高学生从图象中读取信息的能力,掌握数形结合的思想方法,以便更好地解决实际问题

反比例函数教案设计 篇三

教学目标:

使学生对反比例函数和反比 例函数的图象意义加深理解。

教学重点:

反比例函数 的应用

教学程序:

一、新授:

1、实例1:(1)用含S的代数式 表示P,P是 S的反比例函数吗?为什么?

答:P=600s (s0),P 是S的反比例函数。

(2)、当木板面积为0.2 m2时,压强是多少?

答:P=3000Pa

(3)、如果要求压强不超过6000Pa,木板的面积至少 要多少?

答:至少0.lm2。

(4)、在直角坐标系中,作出相应的函数 图象。

(5)、请利用图象(2)和(3)作出直观 解释,并与同伴进行交流。

二、做一做

1、(1)蓄电池的电 压为定值,使用此电源时,电流I(A)与电阻R()之间的函数关系如图5-8 所示。

(2)蓄电池的电压是多少?你以写出这一函数的表达式吗?

电压U=36V , I=60k

2、完成下表,并 回答问题,如果以蓄电池为电源的用电器限制电流不得超过10A,那么用电器的可变电阻应控制在什么范围内?

R() 3 4 5 6 7 8 9 10

I(A )

3、如图5-9,正比例函数y=k1x的图象与反比例函数y=60k 的图象相交于A、B两点,其中点A的坐标为(3 ,23 )

(1)分别写出这两个函 数的表达式;

(2)你能求出点B的坐标吗?你是怎样求的?与同伴进行交流;

随堂练习:

P145~146 1、2、3、4、5

作业:P146习题5.4 1、2

《反比例函数》教学设计 篇四

一、教材分析

反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。因此反比例函数的概念与意义的教学是基础。

二、学情分析

由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。

三、教学目标

知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式。

解决问题:能从实际问题中抽象出反比例函数并确定其表达式。情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际。

四、教学重难点

重点:理解反比例函数意义,确定反比例函数的表达式。

难点:反比例函数表达式的确立。

五、教学过程

(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;

(2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化。

请同学们写出上述函数的表达式

14631000(2)y=txk可知:形如y=(k为常数,k≠0)的函数称为反比例函数,其中xx(1)v=是自变量,y是函数。

此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际。由于是分式,当x=0时,分式无意义,所以x≠0。

当y=中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。此时y就不是反比例函数了。

举例:下列属于反比例函数的是

(1)y=(2)xy=10(3)y=k—1x(4)y=—

此过程的目的是通过分析与练习让学生更加了解反比例函数的概念问已知y与x成反比例,y与x—1成反比例,y+1与x成反比例,y+1与x—1成反比例,将如何设其解析式(函数关系式)

已知y与x成反比例,则可设y与x的函数关系式为y=

kx?1

k已知y+1与x成反比例,则可设y与x的函数关系式为y+1=xkxkxkxkx2x已知y与x—1成反比例,则可设y与x的函数关系式为y=

已知y+1与x—1成反比例,则可设y与x的函数关系式为y+1=kx?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。

例:已知y与x2反比例,并且当x=3时y=4

(1)求出y和x之间的函数解析式

(2)求当x=1.5时y的值

解析:因为y与x2反比例,所以设y?k,只要将k求出即可得到yx2

和x之间的函数解析式。之后引导学生书写过程。能从实际问题中抽象出反比例函数并确定其表达式最后学生练习并布置作业

通过此环节,加深对本节课所内容的认识,以达到巩固的目的。

六、评价与反思

本节课是在学生现有的认识基础上进行讲解,便于学生理解反比例函数的概念。而本节课的重点在于理解反比例函数意义,确定反比例函数的表达式。应该对这一方面的内容多练习巩固。

反比例函数教案设计 篇五

教学目标:

1、知识与能力目标:

(1)复习反比例函数概念、图象与性质的知识点,通过相应知识点的配套练习加深学生对反比例函数本章知识的理解与掌握。

(2)能够根据问题中的条件确定反比例函数的解析式,会画出它的图象,并根据问题确定自变量的取值范围及增减性。

2、过程与方法目标:通过对相关问题的变式探究,正确运用反比例函数知识,进一步体验形成解决问题的一些基本策略,发展实践能力和创新精神。

3、情感态度与价值观目标:创设教学情景,鼓励学生主动参与反比例函数复习活动,激发学习兴趣,获得问题解决后的乐趣,继续渗透数形结合等数学思想方法。

教学重点和难点

重点:进一步掌握反比例函数的概念、图像、性质并正确运用。

难点:反比例函数性质的灵活运用。数形结合思想的应用。

教学方法:

探究——讨论——交流——总结

教学媒体:

多媒体课件。

教学过程:

一、知识梳理:

同学们,今天我们就来复习反比例函数,通过今天的复习课,希望大家加深对反比例函数知识的理解和运用首先请同学们回忆一下,对反比例函数你了解那知识?

课件展示:

1、反比例函数的意义

2、反比例函数的图象与性质

3、利用反比例函数解决实际问题

二、合作交流、解读探究

(一)与反比例函数的意义有关的问题

课件展示:

忆一忆:什么是反比例函数?

要求学生说出反比例函数的意义及其等价形式

巩固练习:课件展示:

1、下列函数中,哪些是反比例函数?

(1)y= 5/x(2)y=x/4+2 (3)y= -5/3x(4)y=-7 x的-1次方(5)y=1/x+4

2、写出下列问题中的函数关系式,并指出它们是什 么函数?

⑴当路程s一定时,时间t与平均速度v之间的关系。

⑵质量为m(kg)的气体,其体积v(m3)与密度ρ(kg/m3)之间的关系。

3、若y= 为反比例函数,则m=______

4、若y=(m-1) 为反比例函数,则m=______ 。

(二)运用反比例函数的图象与性质解决问题

1、反比例函数的图象是

2、图象性质见下表(课件展示):

3、做一做(课件展示)

(1)函数y= 的图象在第______象限,当x<0时,y随x的增大而______ 。

(2)双曲线y= 经过点 (-3 ,______ )。

(3)函数y= 的图象在二、四象限内,m的取值范围是______ 。

(4)若双曲线经过点(-3 ,2),则其解析式是______.

(5)已知点A(-2,y1),B(-1,y2) C(4,y3)都在反比例函数y= 的图象上,则y1、y2 与y3的大小关系(从大到小)为____________ 。

(三)综合运用(课件展示)

一次函数的图像y=ax+b与反比例函数y= 交与M(2,m)、N(-1,-4)两点。(1)求反比例函数和一次函数的解析式;(2)根据图像写出反比例函数的值大于一次函数的值的X 的取值范围

三、随堂练习

见课件

四、小结

1、反比例函数的意义

2、反比例函数的图象与性质

五、作业:

配套练习22页21、22题

《反比例函数》教学设计 篇六

教学重点:

理解和领会反比例函数的概念.

教学难点:

领悟反比例的概念.

教学过程:

一、创设情境,导入新课

活动1

问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?

(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;

(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;

(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.

师生行为:

先让学生进行小组合作交流,再进行全班性的问答或交流。学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式.

教师组织学生讨论,提问学生,师生互动.

在此活动中老师应重点关注学生:

①能否积极主动地合作交流.

②能否用语言说明两个变量间的关系.

③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象.

分析及解答:(1);(2);(3)

其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;

上面的函数关系式,都具有的形式,其中k是常数.

二、联系生活,丰富联想

活动2

下列问题中,变量间的对应关系可用这样的函数式表示?

(1)一个游泳池的容积为2000m3,注满游泳池所用的时间随注水速度u的变化而变化;

(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;

(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化.

师生行为

学生先独立思考,在进行全班交流.

教师操作课件,提出问题,关注学生思考的过程,在此活动中,教师应重点关注学生:

(1)能否从现实情境中抽象出两个变量的函数关系;

(2)能否积极主动地参与小组活动;

(3)能否比较深刻地领会函数、反比例函数的概念.

分析及解答:(1);(2);(3)

概念:如果两个变量x,y之间的关系可以表示成的`形式,那么y是x的反比例函数,反比例函数的自变量x不能为零.

活动3

做一做:

一个矩形的面积为20cm2,相邻的两条边长为xcm和ycm.那么变量y是变量x的函数吗?是反比例函数吗?为什么?

师生行为:

学生先进行独立思考,再进行全班交流.教师提出问题,关注学生思考.此活动中教师应重点关注:

①生能否理解反比例函数的意义,理解反比例函数的概念;

②学生能否顺利抽象反比例函数的模型;

③学生能否积极主动地合作、交流;

活动4

问题1:下列哪个等式中的y是x的反比例函数?

问题2:已知y是x的反比例函数,当x=2时,y=6

(1)写出y与x的函数关系式:

(2)求当x=4时,y的值.

师生行为:

学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并给予及时引导.在此活动中教师应重点关注:

①学生能否领会反比例函数的意义,理解反比例函数的概念;

②学生能否积极主动地参与小组活动.

分析及解答:

1.只有xy=123是反比例函数.

2.分析:因为y是x的反比例函数,所以,再把x=2和y=6代入上式就可求出常数k的值.

解:(1)设,因为x=2时,y=6,所以有解得k=12

三、巩固提高

活动5

1.已知y是x的反比例函数,并且当x=3时,y=?8.

(1)写出y与x之间的函数关系式.

(2)求y=2时x的值.

2.y是x的反比例函数,下表给出了x与y的一些值:

(1)写出这个反比例函数的表达式;

(2)根据函数表达式完成上表.

学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”.

四、课时小结

反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.

《反比例函数》教学设计 篇七

[教学目标]

1.回顾反比例函数的概念.通过实际问题,进一步感受用反比例函数解决实际问题的过程与方法,体会反比例函数是分析、解决实际问题的一种有效的模型.

2.归纳总结反比例函数的图象和性质,进一步体会形数结合的数学思想方法.

[教学过程]

1.回顾、梳理本章的知识:

如同已经学过的有关方程、函数的内容一样,本章内容分为3块:

(1)从生活到数学:从问题到反比例函数,即建构实际问题的数学模型;

(2)数学研究:反比例函数的图象与性质;

(3)用数学解决问题:反比例函数的应用.

2.可以设计一组问题,重点归纳、整理反比例函数的图象与性质,进一步感受形数结合的数学思想方法.例如:

(1)由形到数——用待定系数法求反比例函数的关系式;由图象的位置或图象的部分确定函数的特征;

(2)由数到形――根据反比例函数关系式或反比例函数的性质,确定图形的位置、趋势等;

(3)形数结合——函数的图象与性质的综合应用

2例如:如图,点P是反比例函数y?上的一点,PD垂直x轴于点D,则△xPOD的面积为________

3.设计一个实际问题,让学生经历“问题情境一建立模型一求解一解释与应用”的基本过程.

例如:为了预防“非典”,某学校对教室采用药薰法进行消毒.已知药物燃烧时.室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例(如图).现测得药物8min燃毕,此时室内空气中每立方米含药量为6mg。

(1)写出药物燃烧前、后y与x的函数关系式;

(2)研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室.那么从消毒开始,至少需要多少时间,学生方能进入教室?

(3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不少于10min时,才能有效灭杀空气中的病菌,那么这次消毒是否有效?

你也可以在搜索更多本站小编为你整理的其他反比例函数教案【多篇】范文。

由小编墨香古卷整理的文章反比例函数教案【多篇】分享结束了,希望给你学习生活工作带来帮助。

Tags:反比例   教案   函数   多篇  

搜索
网站分类